Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.358
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149884, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38598901

RESUMO

In the clinical setting, chemotherapy is the most widely used antitumor treatment, however, chemotherapy resistance significantly limits its efficacy. Reduced drug influx is a key mechanism of chemoresistance, and inhibition of the complexity of the tumor microenvironment (TME) may improve chemotherapy drug influx and therapeutic efficiency. In the current study, we identified that the major extracellular matrix protein collagen I is more highly expressed in lung cancer tissues than adjacent tissues in patients with lung cancer. Furthermore, Kaplan-Meier analysis suggested that COL1A1 expression was negatively correlated with the survival time of patients with lung cancer. Our previous study demonstrated that miR-29a inhibited collagen I expression in lung fibroblasts. Here, we investigated the effect of miR-29a on collagen I expression and the cellular behavior of lung cancer cells. Our results suggest that transfection with miR-29a could prevent Lewis lung carcinoma (LLC) migration by downregulating collagen I expression, but did not affect the proliferation, apoptosis, and cell cycle of LLC cells. In a 3D tumoroid model, we demonstrated that miR-29a transfection significantly increased cisplatin (CDDP) permeation and CDDP-induced cell death. Furthermore, neutral lipid emulsion-based miR-29a delivery improved the therapeutic effect of cisplatin in an LLC spontaneous tumor model in vivo. In summary, this study shows that targeting collagen I expression in the TME contributes to chemotherapy drug influx and improves therapeutic efficacy in lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Cisplatino/farmacologia , MicroRNAs/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Permeabilidade , Proliferação de Células , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Orphanet J Rare Dis ; 19(1): 116, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475860

RESUMO

BACKGROUND: Very little is known about the characteristics of echocardiographic abnormalities and joint hypermobility in Chinese patients with osteogenesis imperfecta (OI). The aim of our study was to investigate the characteristics, prevalence and correlation of echocardiographic abnormalities and joint hypermobility in Chinese patients with OI. METHODS: A cross-sectional comparative study was conducted in pediatric and adult OI patients who were matched in age and sex with healthy controls. Transthoracic echocardiography was performed in all patients and controls, and parameters were indexed for body surface area (BSA). The Beighton score was used to evaluate the degree of joint hypermobility. RESULTS: A total of 48 patients with OI (25 juveniles and 23 adults) and 129 age- and sex-matched healthy controls (79 juveniles and 50 adults) were studied. Four genes (COL1A1, COL1A2, IFITM5, and WNT1) and 39 different mutation loci were identified in our study. Mild valvular regurgitation was the most common cardiac abnormality: mild mitral and tricuspid regurgitation was found in 12% and 36% of pediatric OI patients, respectively; among 23 OI adults, 13% and 17% of patients had mild mitral and tricuspid regurgitation, respectively, and 4% had mild aortic regurgitation. In multiple regression analysis, OI was the key predictor of left atrium diameter (LAD) (ß=-3.670, P < 0.001) and fractional shortening (FS) (ß = 3.005, P = 0.037) in juveniles, whereas for adults, OI was a significant predictor of LAD (ß=-3.621, P < 0.001) and left ventricular mass (LVM) (ß = 58.928, P < 0.001). The percentages of generalized joint hypermobility in OI juveniles and adults were 56% and 20%, respectively. Additionally, only in the OI juvenile group did the results of the Mann‒Whitney U test show that the degree of joint hypermobility was significantly different between the echocardiographic normal and abnormal groups (P = 0.004). CONCLUSIONS: Mild valvular regurgitation was the most common cardiac abnormality in both OI juveniles and adults. Compared with OI adults, OI juveniles had more prevalent and wider joint hypermobility. Echocardiographic abnormalities may imply that the impairment of type I collagen is more serious in OI. Baseline echocardiography should be performed in OI patients as early as possible.


Assuntos
Cardiopatias Congênitas , Instabilidade Articular , Osteogênese Imperfeita , Insuficiência da Valva Tricúspide , Adulto , Humanos , Criança , Estudos Transversais , Colágeno Tipo I/genética , Ecocardiografia , Mutação , China
4.
Differentiation ; 136: 100757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437764

RESUMO

Collagen is a highly abundant protein in the extracellular matrix of humans and mammals, and it plays a critical role in maintaining the body's structural integrity. Type I collagen is the most prevalent collagen type and is essential for the structural integrity of various tissues. It is present in nearly all connective tissues and is the main constituent of the interstitial matrix. Mutations that affect collagen fiber formation, structure, and function can result in various bone pathologies, underscoring the significance of collagen in sustaining healthy bone tissue. Studies on type 1 collagen have revealed that mutations in its encoding gene can lead to diverse bone diseases, such as osteogenesis imperfecta, a disorder characterized by fragile bones that are susceptible to fractures. Knowledge of collagen's molecular structure, synthesis, assembly, and breakdown is vital for comprehending embryonic and foetal development and several aspects of human physiology. In this review, we summarize the structure, molecular biology of type 1 collagen, its biomineralization and pathologies affecting bone.


Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Animais , Humanos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Calcificação Fisiológica/genética , Colágeno/metabolismo , Osteogênese Imperfeita/genética , Osso e Ossos , Mutação , Mamíferos/metabolismo
5.
BMC Oral Health ; 24(1): 376, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519884

RESUMO

Dental fluorosis (DF) is a prevalent developmental defect of tooth enamel caused by exposure to excessive fluoride, with the severity dependent on various factors. This study aimed to investigate the association between DF and a specific genetic polymorphism (rs412777) in the COL1A2 gene among a Tunisian population. A case-control study was conducted from July to November 2022, involving a total of 95 participants including 51 cases and 44 controls. Dental examinations and genetic analysis were performed to assess the relationship between the COL1A2 gene polymorphism and DF.The results of allelic distribution revealed that A allele carriers were significantly protected against (DF) when compared to those with the C allele (C vs. A, p = 0.001; OR = 0.375 (0.207-0.672)). This suggests a strong correlation between the presence of the C allele and the risk of developing DF. Additionally, significant association between the CC genotype of rs412777 and an increased risk of DF was found under both codominant and dominant genetic models (P = 0.002 and P < 0.001 respectively).The findings suggest that genetic predisposition plays a relevant role in the development of DF. Further research is needed to explore the potential use of genetic markers for DF and their implications for public health. This study provides the first insights into the genetic factors associated with DF in the Tunisian population, contributing to our understanding of this prevalent dental condition.


Assuntos
Fluorose Dentária , Humanos , Fluorose Dentária/genética , Estudos de Casos e Controles , Polimorfismo Genético/genética , Genótipo , Fluoretos , Colágeno Tipo I/genética
6.
Mol Biol Rep ; 51(1): 449, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536562

RESUMO

BACKGROUND: Osteogenesis imperfecta (OI) is a heritable connective tissue disorder characterized by bone deformities, fractures and reduced bone mass. OI can be inherited as a dominant, recessive, or X-linked disorder. The mutational spectrum has shown that autosomal dominant mutations in the type I collagen-encoding genes are responsible for OI in 85% of the cases. Apart from collagen genes, mutations in more than 20 other genes, such as CRTAP, CREB3L1, MBTPS2, P4HB, SEC24D, SPARC, FKBP10, LEPRE1, PLOD2, PPIB, SERPINF1, SERPINH1, SP7, WNT1, BMP1, TMEM38B, and IFITM5 have been reported in OI. METHODS AND RESULTS: To understand the genetic cause of OI in four cases, we conducted whole exome sequencing, followed by Sanger sequencing. In case #1, we identified a novel c.506delG homozygous mutation in the WNT1 gene, resulting in a frameshift and early truncation of the protein at the 197th amino acid. In cases #2, 3 and 4, we identified a heterozygous c.838G > A mutation in the COL1A2 gene, resulting in a p.Gly280Ser substitution. The clinvar frequency of this mutation is 0.000008 (GnomAD-exomes). This mutation has been identified by other studies as well and appears to be a mutational hot spot. These pathogenic mutations were found to be absent in 96 control samples analyzed for these sites. The presence of these mutations in the cases, their absence in controls, their absence or very low frequency in general population, and their evaluation using various in silico prediction tools suggested their pathogenic nature. CONCLUSIONS: Mutations in the WNT1 and COL1A2 genes explain these cases of osteogenesis imperfecta.


Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Proteína Wnt1 , Humanos , Colágeno Tipo I/genética , Sequenciamento do Exoma , Mutação/genética , Osteogênese Imperfeita/genética , Proteína Wnt1/genética
7.
Hum Cell ; 37(3): 817-831, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38379122

RESUMO

Van der Hoeve's syndrome, also known as osteogenesis imperfecta (OI), is a genetic connective tissue disorder characterized by fragile, fracture-prone bone and hearing loss. The disease is caused by a gene mutation in one of the two type I collagen genes COL1A1 or COL1A2. In this study, we identified a novel frameshift mutation of the COL1A1 gene (c.1607delG) in a family with OI using whole-exome sequencing, bioinformatics analysis and Sanger sequencing. This mutation may lead to the deletion of a portion of exon 23 and the generation of a premature stop codon in the COL1A1 gene. To further investigate the impact of this mutation, we established two induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells of OI patients carrying a novel mutation in the COL1A1 gene. Osteoblasts (OB) derived from OI-iPSCs exhibited reduced production of type I collagen and diminished ability to differentiate into osteoblasts. Using a CRISPR-based homology-directed repair strategy, we corrected the OI disease-causing COL1A1 novel mutations in iPSCs generated from an affected individual. Our results demonstrated that the diminished expression of type I collagen and osteogenic potential were enhanced in OB induced from corrected OI-iPSCs compared to those from OI-iPSCs. Overall, our results provide new insights into the genetic basis of Van der Hoeve's syndrome and highlight the potential of iPSC technology for disease modeling and therapeutic development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteogênese Imperfeita , Humanos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/terapia , Colágeno Tipo I/genética , Leucócitos Mononucleares , Sistemas CRISPR-Cas/genética , Cadeia alfa 1 do Colágeno Tipo I , Mutação
8.
Chem Biol Drug Des ; 103(1): e14421, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230771

RESUMO

Dihydromyricetin (DHM) is a bioactive flavonoid extracted from Hovenia dulcis, which has various activities. In the present study, the molecular mechanism of dihydromyricetin (DHM) in relieving liver cirrhosis was investigated through network pharmacology and experimental verification. The cell model was induced by TGF-ß1 activating the human hepatic stellate cell line (HSC; LX-2). The protein levels of α-SMA, collagen I, and collagen III and pathway-related proteins within LX-2 cells were detected using Western blot. EdU staining was conducted to detect cell proliferation. Immunofluorescence staining was performed to detect the expression levels of α-SMA and collagen I. Next, the drug targets of DHM were screened from the PubChem database. The differentially expressed genes in the liver cirrhosis dataset GSE14323 were identified. The expression of the identified drug targets in LX-2 cells was verified using qRT-PCR. The results showed that TGF-ß1 treatment notably increased LX-2 cell viability, promoted cell proliferation, and elevated α-SMA, collagen I, and collagen III protein contents. DHM treatment could partially eliminate TGF-ß1 effects, as evidenced by the inhibited cell viability and proliferation and reduced α-SMA, collagen I, and collagen III contents. After network pharmacology analysis, nine differentially expressed target genes (MMP2, PDGFRB, PARP1, BCL2L2, ABCB1, TYR, CYP2E1, SQSTM1, and IL6) in liver cirrhosis were identified. According to qRT-PCR verification, DHM could inhibit the expression of MMP2, PDGFRB, PARP1, CYP2E1, SQSTM1, and IL6, and enhance ABCB1 expression levels within LX-2 cells. Moreover, DHM inhibited mTOR and MAPK signaling pathways in TGF-ß1-induced HSCs. In conclusion, DHM could inhibit HSC activation, which may be achieved via acting on MMP2, PDGFRB, PARP1, CYP2E1, SQSTM1, IL6, and ABCB1 genes and their downstream signaling pathways, including mTOR and MAPK signaling pathway.


Assuntos
Flavonóis , Metaloproteinase 2 da Matriz , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Interleucina-6/metabolismo , Farmacologia em Rede , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Proteína Sequestossoma-1/metabolismo , Cirrose Hepática/tratamento farmacológico , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
9.
Gene ; 899: 148141, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38184019

RESUMO

Porcine skin is similar to human skin in physiology, anatomy and histology and is often used as a model animal for human skin research. There are few studies on the transcriptome aspects of pig skin during the embryonic period. In this study, RNA sequencing was performed on the dorsal skin of Chenghua sows at embryonic day 56 (E56), embryonic day 76 (E76), embryonic day 105 (E105), and 3 days after birth (D3) to explore RNA changes in pig dorsal skin at four ages. A number of skin-related differential genes were identified by intercomparison between RNAs at four time points, and KEGG functional analysis showed that these differential genes were mainly enriched in metabolic and developmental, immune, and disease pathways, and the pathways enriched in GO analysis were highly overlapping. Collagen is an important part of the skin, with type I collagen making up the largest portion. In this study, collagen type I alpha 1 (COL1A1) and collagen type I alpha 2 (COL1A2) were significantly upregulated at four time points. In addition, lncRNA-miRNA-mRNA and miRNA-circRNA coexpression networks were constructed. The data obtained may help to explain age-related changes in transcriptional patterns during skin development and provide further references for understanding human skin development at the molecular level.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Suínos/genética , Feminino , Colágeno Tipo I/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Longo não Codificante/genética
10.
Cell Rep Med ; 5(1): 101352, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232700

RESUMO

Steatotic liver disease (SLD) prevails as the most common chronic liver disease yet lack approved treatments due to incomplete understanding of pathogenesis. Recently, elevated hepatic and circulating interleukin 32 (IL-32) levels were found in individuals with severe SLD. However, the mechanistic link between IL-32 and intracellular triglyceride metabolism remains to be elucidated. We demonstrate in vitro that incubation with IL-32ß protein leads to an increase in intracellular triglyceride synthesis, while downregulation of IL32 by small interfering RNA leads to lower triglyceride synthesis and secretion in organoids from human primary hepatocytes. This reduction requires the upregulation of Phospholipase A2 group IIA (PLA2G2A). Furthermore, downregulation of IL32 results in lower intracellular type I collagen levels in di-lineage human primary hepatic organoids. Finally, we identify a genetic variant of IL32 (rs76580947) associated with lower circulating IL-32 and protection against SLD measured by non-invasive tests. These data suggest that IL32 downregulation may be beneficial against SLD.


Assuntos
Fígado Gorduroso , Hepatopatias , Humanos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Triglicerídeos/metabolismo , Regulação para Baixo/genética , Interleucinas/genética , Organoides
11.
J Nutr Biochem ; 125: 109565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176621

RESUMO

Various endogenous and exogenous stimuli can result in an inflammatory response and collagen deposition in the liver, which affect liver function and increase the risk of developing liver cirrhosis and cancer. Rice bran, the main by-product of rice milling, contains various nutrients which possess hepatoprotective activities. In this study, we investigated the effects of rice bran on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Mice were fed a rice-bran-containing diet (10% rice bran w/w) or a standard diet with or without an injection of 20% CCl4 to induce liver fibrosis. Our results showed that feeding a rice-bran-containing diet could alleviate CCl4-induced liver damage, collagen deposition, and expressions of fibrosis-related genes, including α-smooth muscle actin (α-SMA), collagen 1a2 (COL1A2), and transforming growth factor-ß (TGF-ß) in liver tissues. Moreover, consumption of rice bran enhanced phase II detoxification and antioxidant gene expressions, including Gsta3, Gstp1, Catalase, SOD1, SOD2, and SOD3. Treatment with γ-oryzanol, the major bioactive compound in rice bran, decreased the sensitivity of hepatic stellate cells (HSCs) to TGF-ß1-induced α-SMA, COL1A2, and phosphorylated smad2 expressions. In conclusion, a rice-bran-containing diet may have beneficial effects on liver fibrogenesis through increased antioxidant and detoxification activities. γ-Oryzanol, the major bioactive compound of rice bran, can inhibit activation of HSCs.


Assuntos
Antioxidantes , Oryza , Fenilpropionatos , Animais , Camundongos , Antioxidantes/metabolismo , Oryza/metabolismo , Células Estreladas do Fígado/metabolismo , Transdução de Sinais , Cirrose Hepática/metabolismo , Fígado/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Dieta , Tetracloreto de Carbono/toxicidade
12.
Gene ; 895: 148002, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979948

RESUMO

BACKGROUND: Rotator cuff tears (RCTs) are culprit of shoulder pain and dysfunction. Tendon-bone interface (TBI) mal-healing is an essential contributor to retear after RCTs. Consequently, present project was conducted to investigate the role of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes on TBI healing. METHOD: Young BMSCs (Y-BMSCs) and Aged BMSCs (A-BMSCs) were isolated from Young (3-month-old) and old (24-month-old) SD rats, and their-derived exosomes (A-BMSCs-exo and Y-BMSCs-exo) were identified. RCTs model was established, and A-BMSCs-exo and Y-BMSCs-exo were injected at the rotator cuff using hydrogel as a vehicle. Pathological changes of TBI were observed by HE, Sirius Red and Oil Red O staining. Western blotting and RT-qPCR were applied to assess the expression of extracellular matrix (ECM)-, tendon cell (TCs)-, osteogenic-, tendon-derived stem cell (TDSCs)- and angiogenic-associated proteins and mRNAs in TBI. RESULT: Y-BMSCs exhibited increased activity, osteogenic and lipogenic abilities than A-BMSCs. After A-BMSCs-exo and Y-BMSCs-exo treatment, TBI displayed massive sharpey's fibers growing along the tendon longitudinally, and a collagen fiber-chondrocyte migration zone forming a typical tendon-noncalcified fibrocartilage-calcified fibrocartilage-bone structure. A-BMSCs-exo and Y-BMSCs-exo significantly upregulated the expression of collagen Col I/II/III, Aggrecan, TNMD, SCX, Runx2, OPN, CD45, Sox2, CD31 and VEGFR2 in TBI. In vitro, A-BMSCs-exo and Y-BMSCs-exo significantly enhanced the activity of TCs and TDSCs, TDSCs stemness, and reduced the osteogenic and lipogenic capacity of TDSCs. The effect of Y-BMSCs-exo was significantly stronger than that of A-BMSCs-exo. CONCLUSION: BMSCs-derived exosomes facilitate ECM remodeling, osteogenic differentiation, angiogenesis, and stemness of TDSCs, thereby accelerating TBI healing in RCTs, with better outcomes using young individual-derived BMSCs.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Lesões do Manguito Rotador , Ratos , Animais , Lesões do Manguito Rotador/terapia , Ratos Sprague-Dawley , Tendões , Colágeno Tipo I/genética
13.
Am J Physiol Cell Physiol ; 326(1): C177-C193, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955339

RESUMO

Fibroblasts are the main producers of extracellular matrix (ECM) responsible for ECM maintenance and repair, a process often disrupted in chronic lung diseases. The accompanying mechanical changes adversely affect resident cells and overall lung function. Numerous models have been used to elucidate fibroblast behavior that are now evolving toward complex three-dimensional (3-D) models incorporating ECM, aiming to replicate the cells' native environment. Little is known about the cellular changes that occur when moving from two-dimensional (2-D) to 3-D cell culture. This study compared the gene expression profiles of primary human lung fibroblasts from seven subjects with normal lung function, that were cultured for 24 h on 2-D collagen I-coated tissue culture plastic and in 3-D collagen I hydrogels, which are commonly used to mimic ECM in various models, from contraction assays to intricate organ-on-a-chip models. Comparing 3-D with 2-D cell culture, 6,771 differentially expressed genes (2,896 up, 3,875 down) were found; enriched gene sets within the downregulated genes, identified through Gene Set Enrichment Analysis and Ingenuity Pathway Analysis, were involved in the initiation of DNA replication which implied downregulation of fibroblast proliferation in 3-D. Observation of cells for 72 h in 2-D and 3-D environments confirmed the reduced progression through the cell cycle in 3-D. A focused analysis, examining the Hippo pathway and ECM-associated genes, showed differential patterns of gene expression in the 3-D versus 2-D culture. Altogether, the transcriptional response of fibroblasts cultured in 3-D indicated inhibition of proliferation, and alterations in Hippo and ECM pathways indicating a complete switch from proliferation to ECM remodeling.NEW & NOTEWORTHY With the introduction of complex three-dimensional (3-D) lung models, comes a need for understanding cellular behavior in these models. We compared gene expression profiles of human lung fibroblasts grown on two-dimensional (2-D) collagen I-coated surfaces with those in 3-D collagen I hydrogels. RNA sequencing and subsequent pathway analyses showed decreased proliferation, increased extracellular matrix (ECM) remodeling, and altered Hippo signaling and ECM deposition-related gene signatures. These findings highlight unique responses of fibroblasts in 3-D models.


Assuntos
Matriz Extracelular , Pulmão , Humanos , Matriz Extracelular/metabolismo , Pulmão/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Hidrogéis/metabolismo
14.
Curr Eye Res ; 49(2): 150-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921272

RESUMO

PURPOSE: To investigate collagen I, collagen V, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), lysyl oxidase (LOX), transforming growth factor ß1 (TGF-ß1) and interleukin-6 (IL-6) expression in healthy and keratoconus human corneal fibroblasts (HCFs and KC-HCFs), 24 h after Rose Bengal photodynamic therapy (RB-PDT). METHODS: HCFs were isolated from healthy human corneal donors (n = 5) and KC-HCFs from elective penetrating keratoplasties (n = 5). Both cell cultures underwent RB-PDT (0.001% RB concentration, 0.17 J/cm2 fluence) and 24 h later collagen I, collagen V, NF-κB, LOX, TGF-ß1 and IL-6 mRNA and protein expression have been determined using qPCR and Western blot, IL-6 concentration in the cell culture supernatant by ELISA. RESULTS: TGF-ß1 mRNA expression was significantly lower (p = 0.02) and IL-6 mRNA expression was significantly higher in RB-PDT treated HCFs (p = 0.01), than in HCF controls. COL1A1, COL5A1 and TGF-ß1 mRNA expression was significantly lower (p = 0.04; p = 0.02 and p = 0.003) and IL-6 mRNA expression was significantly higher (p = 0.02) in treated KC-HCFs, than in KC-HCF controls. TGF-ß1 protein expression in treated HCFs was significantly higher than in HCF controls (p = 0.04). IL-6 protein concentration in the HCF and KC-HCF culture supernatant after RB-PDT was significantly higher than in controls (p = 0.02; p = 0.01). No other analyzed mRNA and protein expression differed significantly between the RB-PDT treated and untreated groups. CONCLUSIONS: Our study demonstrates that RB-PDT reduces collagen I, collagen V and TGF-ß1 mRNA expression, while increasing IL-6 mRNA and protein expression in KC-HCFs. In HCFs, RB-PDT increases TGF-ß1 and IL-6 protein level after 24 h.


Assuntos
Interleucina-6 , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Rosa Bengala/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Proteína-Lisina 6-Oxidase/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Orthod Craniofac Res ; 27(2): 237-243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37642979

RESUMO

INTRODUCTION: Cranio-cervical anomalies are significant complications of osteogenesis imperfecta (OI), a rare bone fragility disorder that is usually caused by mutations in collagen type I encoding genes. OBJECTIVE: To assess cranio-cervical anomalies and associated clinical findings in patients with moderate-to-severe OI using 3D cone beam computed tomography (CBCT) scans. METHODS: Cross-sectional analysis of CBCT scans in 52 individuals with OI (age 10-37 years; 32 females) and 40 healthy controls (age 10-32 years; 26 females). Individuals with a diagnosis of OI type III (severe, n = 11), type IV (moderate, n = 33) and non-collagen OI (n = 8) were recruited through the Brittle Bone Disorders Consortium. Controls were recruited through the orthodontic clinic of the University of Missouri-Kansas City (UMKC). RESULTS: OI and control groups were similar in mean age (OI: 18.4 [SD: 7.2] years, controls: 18.1 [SD: 6.3] years). The cranial base angle was increased in the OI group (OI: mean 148.6° [SD: 19.3], controls: mean 130.4° [SD: 5.7], P = .001), indicating a flatter cranial base. Protrusion of the odontoid process into the foramen magnum (n = 7, 14%) and abnormally located odontoid process (n = 19, 37%) were observed in the OI group but not in controls. Low stature, expressed as height z-score (P = .01), presence of DI (P = .04) and being male (P = .04) were strong predictors of platybasia, whereas height z-score (P = .049) alone was found as positive predictor for basilar impression as per the Chamberlain measurement. CONCLUSION: The severity of the phenotype in OI, as expressed by the height z-score, correlates with the severity of cranial base anomalies such as platybasia and basilar impression in moderate-to-severe OI. Screening for cranial base anomalies is advisable in individuals with moderate-to-severe OI, with special regards to the individuals with a shorter stature and DI.


Assuntos
Osteogênese Imperfeita , Platibasia , Feminino , Humanos , Masculino , Adolescente , Criança , Adulto Jovem , Adulto , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/complicações , Platibasia/complicações , Estudos Transversais , Genótipo , Fenótipo , Mutação , Colágeno Tipo I/genética
16.
Biochem Biophys Res Commun ; 692: 149364, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070276

RESUMO

The periodontal ligament (PDL) is a critical component in maintaining tooth stability. It is composed of cells and an extracellular matrix (ECM), each with unique roles in tissue function and homeostasis. Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, plays a crucial role in regulating ECM assembly and turnover, alongside facilitating cellular-ECM interactions. In the present study, mass spectrometry-based proteomics was used to assess the impacts of Sparc-knockout (KO) on PDL-derived cells. Results demonstrated that Sparc-KO significantly reduces ECM production and alters its composition with increased levels of type I collagen. Despite this increase in Sparc-KO, type I collagen was not likely to be effectively integrated into the fibrils due to collagen cross-linking impairment. Furthermore, the pathway and process enrichment analyses suggested that SPARC plays a protective role against ECM degradation by antagonistically interacting with cell-surface collagen receptors. These findings provide detailed insights into the multifaceted role of SPARC in ECM organization, including its impact on ECM production, collagen regulation, and interactions with various cellular compartments. A better understanding of these complex mechanisms is crucial for comprehending the causes of periodontal disease and tissue regeneration, where precise control of ECM organization is necessary.


Assuntos
Osteonectina , Ligamento Periodontal , Animais , Camundongos , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Camundongos Knockout , Osteonectina/genética , Osteonectina/metabolismo
17.
Am J Med Genet A ; 194(2): 358-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37799085

RESUMO

We report on a female neonate with a clinico-radiological presentation in keeping with a lethal form of prenatal Caffey disease (PCH). She had antenatal and postnatal features of severely bowed long bones, small chest, diaphyseal hyperostosis and polyhydramnios and died shortly after birth. Initial testing excluded COL1A1-related PCH, as an OI gene panel, consisting of COL1A1, COL1A2, CRTAP, and P3H1 genes, was negative. Targeted sequencing using a gene panel was performed and a de novo heterozygous, likely pathogenic variant in IFITM5: c.119C > T(p.Ser40Leu) was identified, which was previously described to cause a severe form of progressively deforming osteogenesis imperfect (OI). To our knowledge, variants in IFITM5 have not been reported in infantile Caffey disease (ICH) or PCH. Given that the pathogenesis of PCH is largely unknown, we postulate that a subset of PCH may be associated with variants in IFITM5.


Assuntos
Doenças Fetais , Hiperostose Cortical Congênita , Osteogênese Imperfeita , Recém-Nascido , Humanos , Feminino , Gravidez , Osteogênese Imperfeita/genética , Mutação , Proteínas de Membrana/genética , Colágeno Tipo I/genética , Osso e Ossos/patologia
18.
J Endocrinol Invest ; 47(1): 67-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37270749

RESUMO

PURPOSE: To evaluate the genotypic and phenotypic relationship in a large cohort of OI patients and to compare the differences between eastern and western OI cohorts. METHODS: A total of 671 OI patients were included. Pathogenic mutations were identified, phenotypic information was collected, and relationships between genotypes and phenotypes were analyzed. Literature about western OI cohorts was searched, and differences were compared between eastern and western OI cohorts. RESULTS: A total of 560 OI patients were identified as carrying OI pathogenic mutations, and the positive detection rate of disease-causing gene mutations was 83.5%. Mutations in 15 OI candidate genes were identified, with COL1A1 (n = 308, 55%) and COL1A2 (n = 164, 29%) being the most common mutations, and SERPINF1 and WNT1 being the most common biallelic variants. Of the 414 probands, 48.8, 16.9, 29.2 and 5.1% had OI types I, III, IV and V, respectively. Peripheral fracture was the most common phenotype (96.6%), and femurs (34.7%) were most commonly affected. Vertebral compression fracture was observed in 43.5% of OI patients. Biallelic or COL1A2 mutation led to more bone deformities and poorer mobility than COL1A1 mutation (all P < 0.05). Glycine substitution of COL1A1 or COL1A2 or biallelic variants led to more severe phenotypes than haploinsufficiency of collagen type I α chains, which induced the mildest phenotypes. Although the gene mutation spectrum varied among countries, the fracture incidence was similar between eastern and western OI cohorts. CONCLUSION: The findings are valuable for accurate diagnosis and treatment of OI, mechanism exploration and prognosis judgment. Genetic profiles of OI may vary among races, but the mechanism needs to be explored.


Assuntos
Doenças Ósseas Metabólicas , Fraturas por Compressão , Osteogênese Imperfeita , Fraturas da Coluna Vertebral , Humanos , Osteogênese Imperfeita/genética , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo I/genética , Genótipo , Fenótipo , Mutação
19.
Clin Genet ; 105(3): 329-334, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38014644

RESUMO

Osteogenesis imperfecta (OI) is a group of genetic disorders of bone formation characterized by soft and shorter brittle bones in affected individuals. OI is generally considered a collagenopathy resulting from abnormal expression of type I collagen. As assay system to detect the cellular level and quality of type I collagen would help in rapid and correct detection of OI from the diagnostic perspectives. Here, we report an immunofluorescence assay for detection of type I collagen in fibroblast models of OI and represented them into two broad categories based on the expression level and aggregation characteristics of pro-α1(I). Cell phenotypic assays of pro-α1(I) in OI-related gene knocked down fibroblasts revealed aggregates of pro-α1(I) in conditions with knockdown of SERPINF1, CRTAP, P3H1, PPIB, SERPINH1, FKBP10, TMEM38B, MESD, and KDELR2, whereas pro-α1(I) expression was very low in fibroblasts which had knockdown of IFITM5, SP7, BMP1, WNT1, CREB3L1, MBTPS2, and CCDC134. The expression of pro-α1(I) showed abundant and non-aggregated distribution in the fibroblasts with knockdown of non-OI skeletal disorder-related genes (RAB33B and IFT52). The in vitro assay accurately detected abnormally expressed pro-α1(I) levels in cellular models of various types of OI. Thus, this procedure represents a promising point-of-detection assay for potential diagnosis and therapeutic decisions in OI.


Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Humanos , Colágeno Tipo I/genética , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/genética , Genes Recessivos , Fibroblastos/metabolismo , Mutação , Proteínas de Transporte Vesicular/genética , Proteínas de Membrana/genética
20.
Mol Genet Genomic Med ; 12(1): e2331, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38073514

RESUMO

BACKGROUND: Stickler syndrome is a multisystemic disorder characterized by ophthalmological and non-ophthalmological abnormalities, frequently misdiagnosed due to high clinical heterogeneity. Stickler syndrome type I (STL1) is predominantly caused by mutations in the COL2A1 gene. METHODS: Exome sequencing and co-segregation analysis were utilized to scrutinize 35 families with high myopia, and pathogenic mutations were identified. Mutant COL2A1 was overexpressed in cells for mechanistic study. A retrospective genotype-phenotype correlation analysis was further conducted. RESULTS: Two novel pathogenic mutations (c.2895+1G>C and c.3505G>A (p.Val1169Ile)) and two reported mutations (c.1597C>T (p.Arg533*) and c.1693C>T (p.Arg565Cys)) in COL2A1 were identified causing STL1. These mutations are all in the G-X-Y triplet, and c.2895+1G>C contributed to aberrant RNA splicing. COL2A1 mutants tended to form large aggregates in the endoplasmic reticulum (ER) and elevated ER stress. Additionally, mutations c.550G>A (p.Ala184Thr) and c.2806G>A (p.Gly936Ser) in COL2A1 were found in high myopia families, but were likely benign, although c.2806G>A (p.Gly936Ser) is on G-X-Y triplet. Moreover, genotype-phenotype correlation analysis revealed that mutations in exon 2 mainly contribute to retinal detachment, whereas mutations in the collagen alpha-1 chain region of COL2A1 tend to cause non-ophthalmologic symptoms. CONCLUSION: This study broadens the COL2A1 gene mutation spectrum, provides evidence for ER stress caused by pathogenic COL2A1 mutations and highlights the importance of non-ophthalmological examination in clinical diagnosis of high myopia.


Assuntos
Artrite , Doenças do Tecido Conjuntivo , Oftalmopatias Hereditárias , Perda Auditiva Neurossensorial , Miopia , Descolamento Retiniano , Humanos , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/genética , Descolamento Retiniano/patologia , Sequenciamento do Exoma , Estudos Retrospectivos , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/genética , Colágeno Tipo I/genética , Miopia/diagnóstico , Miopia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...